

Employment in the Global Aluminium Industry, 2019

May 2021

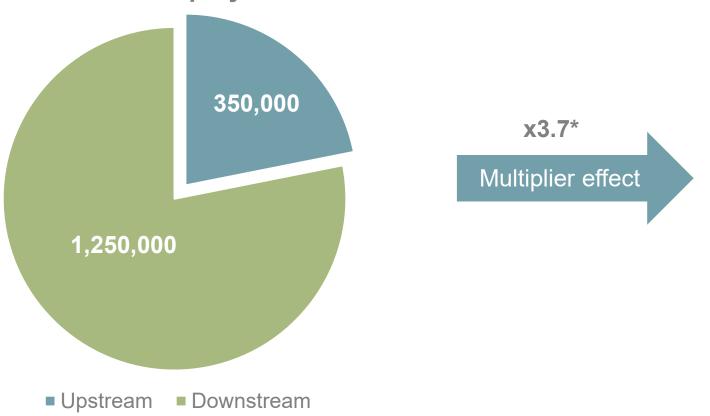
Table of Contents

Objectives	<u>3</u>
Total employment in the aluminium industry, 2019	<u>4</u>
Upstream regional employment of the aluminium industry, 2019	<u>5-6</u>
Downstream regional employment of the aluminium industry, 2019	<u>7</u>
Case Studies	<u>8-1</u>
United Arab Emirates	<u>9-1</u>
United States of America	<u>11</u>
European Union 28 (EU28) + European Free Trade Association (EFTA)	<u>12</u>
Brazil	<u>13</u>
Methodology	<u>14</u>
Data	<u>15</u>
Limitations	<u>16</u>
Sources	<u>17</u>

Objectives

The purpose of this study, by the International Aluminium Institute, is to better understand the economic contribution of the aluminium industry by collating existing information relating to direct and indirect jobs globally.

Employment numbers were developed for three sectors of the industry:


- upstream (mining, refining & smelting)
- downstream
- indirect employment

This study also identifies where employment data gaps exist and the best way to address such gaps.

Total employment in the aluminium industry, 2019

Direct employment:

Indirect employment:

5,925,000

Total direct + indirect:

7,525,000

^{*}A multiplier effect of **3.7** was identified and used to calculate indirect employment.

Upstream regional employment of the aluminium industry, 2019

This table shows 2019 upstream employment numbers by region and country. The data is described in more detail on page 15 and the methodology is explained on page 14.

REGION	COUNTRY	2019 EMPLOYMENT	REGION TOTAL
	Bahrain	3,181	
	Qatar	1,200	
GULF	UAE	7,236	18,414
	Oman	975	
	Saudi Arabia	5,822	
CHINA	China	129,553	129,553
EAST & CENTRAL EUROPE	Russia	20,163	22,989
EAST & CENTRAL EUROPE	Ukraine	2,826	22,303
	Mozambique	1,072	
	Ghana	1,084	
	Egypt	516	
AFRICA	Sierra Leone	357	16,293
	South Africa	2,043	
	Guinea	11,101	
	Nigeria	120	

Estimated upstream jobs (2019):

~350,000

Continues...

Upstream regional employment / continued...

REGION	COUNTRY	2019 EMPLOYMENT	REGION TOTAL
	Canada	8,805	
NORTH AMERICA	USA	3,100	15,925
	Jamaica	4,020	
	Brazil	26,887*	
SOUTH AMERICA	Guyana	529	28,815
	Argentina	1,399	
	New Zealand	992	
OCEANIA	Australia	14,816	16,036
	Solomon Islands	228	
WEST EUROPE	EU28+EFTA	19,500*	19,500
	Indonesia	3,956	
	Malaysia	1,718	
	India	68,000	
	Kazakhstan	2,408	
ASIA (EX. CHINA)	Tajikistan	250	82,168
	Iran	824	
	Azerbaijan	232	
	Vietnam	4,052	
	Turkey	728	

^{*} Includes secondary (recycled) aluminium production

Downstream regional employment of the aluminium industry, 2019

The table shows 2019 downstream employment numbers by region. The data is described in more detail on page 15 and the methodology is explained on page 14.

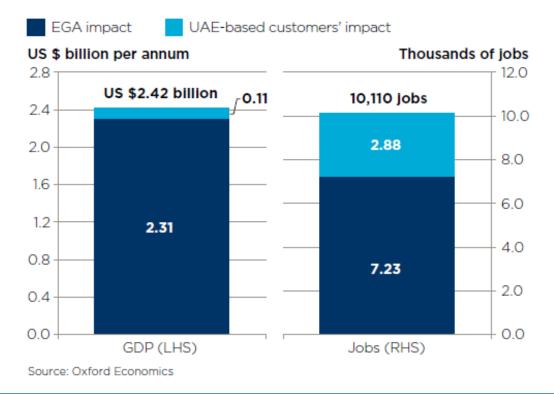
REGION	ROLLING	EXTRUSIONS	CASTINGS	RECYCLING	REGION TOTAL
China	143,017	189,022	137,015	151,942	620,996
Europe		62,000* 13,33			
Japan		59,131			
South America	11,167	4,267	8,015	23,014	46,463
Middle East	9,525	5,743	2,672	10,203	28,142
North America		165,000			
Asia ex. China	22,258	62,622	30,448	71,812	187,140
Other	8,625	9,878	24,687	39,391	82,581

^{*} Direct figures

Estimated downstream jobs: ~1,250,000

Case Studies

- United Arab Emirates
- United States of America
- European Union 28 (EU28) + European Free Trade Association (EFTA)
- Brazil



United Arab Emirates (UAE)

'The Impact of the Aluminium Sector on the UAE Economy' by Oxford Economics (2018) examines the contribution that both Emirates Global Aluminium (EGA) and the wider aluminium sector make to the UAE economy.

The study found that for every individual working in the sector, a further five workers are supported in other parts of the UAE economy, due to the industry's expenditure with local suppliers and payment of wages which are then spent in the local consumer economy (indirect and induced impact).

Fig. 5: The direct GDP and Jobs Impacts of the UAE aluminium sector

United Arab Emirates (UAE) / continued...

Fig. 4: A standard economic impact assessment model

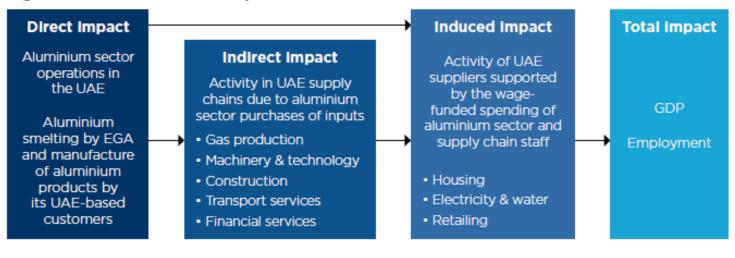


Fig. 14: Indirect Jobs Impact by sector of employer Thousands of jobs Manufacturing 4.95 5.29 Natural resources & utilities Construction 2.63 Wholesale & retail 5.75 Total: Transport services 38,050 Financial services Jobs Renting & real estate Business support services 12.53 2.91 Education 2.92 Other activities

Source: Oxford Economics

United States of America (USA)

'2020 Economic Impact of the Aluminum Industry' by John Dunham & Associates

John Dunham & Associates (prepared for The Aluminum Association, 2021) measures the following:

- number of jobs in the industry;
- wages paid to employees;
- total economic output;
- federal and state business taxes generated.

The study found that economic activity started by the aluminium industry generates output (and jobs) in hundreds of other industries, often in sectors and states far removed from the economic origin.

Table 1 – Economic Contribution of the Aluminum Industry⁷

	Direct	Supplier	Induced	Total
Jobs (FTE)	166,228	229,653	264,061	659,942
Wages	\$12,786,133,600	\$16,964,798,200	\$14,960,436,700	\$44,711,368,500
Economic Impact	\$70,136,296,800	\$54,295,856,700	\$47,471,931,100	\$171,904,084,600
Taxes				\$15,934,382,600

Table 2 – Aluminum Industry Employment by Sector: 2013-2020 Models

	2013 (revised)	2016 (revised)	2018 (revised)	2020	growth 2018-2020	growth 2013 - 2020
Primary	12,787	4,879	3,131	4,829	54.2%	-62.2%
Secondary	9,428	9,507	9,412	8,691	-7.7%	-7.8%
Sheet+Extrusion:	61,806	62,327	63,757	62,883	-1.4%	1.7%
Foundry*	45,234	50,867	51,364	50,551	-1.6%	11.8%
Forging	10,328	10,462	10,888	10,464	-3.9%	1.3%
Coating	2,814	3,132	2,838	2,664	-6.1%	-5.3%
MSC	23,142	24,631	26,563	26,146	-1.6%	13.0%
Total Direct	165,539	165,804	167,953	166,228	-1.0%	0.4%

^{*2013-2016} revised estimates include addition of 8,750 jobs, representing the foundries missed in prior studies (largely captive).

European Union 28 (EU28) + European Free Trade Association (EFTA)

'Sustainable Development Indicators 2015 full data set' by European Aluminium (2017) provides a comprehensive industry dataset of the European Union, covering economic performance, environmental performance and socio-economic contribution.



				NUMBER OF EMPLOYEES				
	1997	2002	2005	2008	2009	2012	2014	2015
Alumina & Metal supply	32.450	31.051	29.614	28.235	25.932	20.579	19.350	19.732
Semi-fabrication	57.101	60.901	57.960	67.367	62.534	62.300	62.652	61.737
Aluminium industry	89.551	91.952	87.574	95.602	88.466	82.879	82.002	81.469

Brazil

'Aluminum Statistical Yearbook 2019' by ABAL - the Brazilian Aluminum Association (2020) provides a comprehensive profile of the Brazilian aluminium industry. The dataset covers jobs (direct and indirect) as well as other economic factors, such as revenue, investments, paid taxes and consumption per capita.

Jobs

	2010	2011	2012	2013	2014	2015	2016	2017	2018 ^r	2019
Empregos diretos Direct jobs (1)	122 523	127 877	130 107	131 609	129 655	130 288	119 444	114 972	113 827	114 015
Extração de bauxita Bauxite extraction	4 050	4 132	4 434	4 513	4 372	4 041	3 957	3 930	3 864	3 978
Metalurgia Metallurgy (2)	26 090	27 077	27 701	27 882	27 235	24 538	22 925	22 595	22 587	22 909
Transformação Processing	92 383	96 668	97 973	99 214	98 048	101709	92 562	88 447	87 377	87128
Indiretos Indirect (3)	267 331	275 156	283 574	288 905	292 189	293 306	295 764	297 943	334 237	370 867
Total Total	389 854	403 033	413 681	420 514	421843	423 594	415 208	412 915	448 064	484 882

Methodology

To accurately assess employment numbers, relevant information held by regional associations was reviewed. The data was then collated, gaps identified, and a calculation method was implemented to fill the gaps in regions where direct employment numbers were unavailable. Figures were calculated using production data and annual production per person ratios. Ratios represent the production (in t or kt) of a person annually. Hence, if annual production and the ratio is known, employment can be calculated via the following equation:

$$annual\ number\ of\ jobs = \frac{annual\ production\ (kt)}{ratio\ (kt/person/year)}$$

To illustrate the method, here is an example of calculated upstream jobs in China (2019):

Aluminium production: 35,795 kt

Alumina refining: 72,474 kt

Bauxite mining: 68,400 kt

Number of jobs

71,590

45,296

12,667

Total: 129,553

Primary Aluminium	Alumina	Bauxite
0.5	1.6	5.4

Ratios, kt/person/year

Data

The upstream sector of this study accounts for the aluminium industry's bauxite mining, refining and smelting processes.

The majority of upstream data was pulled directly from associations and sustainability reports. The few gaps that exist were calculated using production data from the IAI and annual production per person ratios, as outlined on page 14.

Ratios for primary aluminium and alumina were provided by Antaike, while the bauxite ratio was calculated as an average of multiple bauxite mine operations across different regions. In addition, the statistics also contain calculated figures from person hours worked in specific smelters and refineries (assuming a 40-hour working week).

Upstream ratios (in kt/person/year) used in the calculations are outlined below:

Primary Aluminium	Alumina	Bauxite
0.5	1.6	5.4

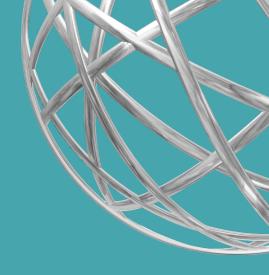
Based on the multiplier effects recorded in four previous studies (Australia, Brazil, India and UAE), we assume that for every direct job in the industry, 3.7 indirect jobs are created.

Limitations

The best available data has been used, however the quality of the data varies for different regions. The following limitations should be noted.

Firstly, the data used to acquire ratios is limited and calculations are affected by regional variability. Different geographical areas have different work efficiency depending on operations (e.g., more/less automation). Consequently, a range of average to advanced level ratios based on geographical location was implemented for employment calculations within the downstream sector.

Due to the limited availability of country-level production data for the downstream sector, the study assessed downstream employment at a regional level only. Moreover, downstream employment in this study does not account for other downstream production - such as wire and forging, and upstream employment does not account for anode production.


The study does not include induced jobs, which are created by wage-funded expenditure on goods and services by employees (both direct and indirect) within the aluminium sector.

Sources

	Country	Source
	New Zealand	New Zealand Aluminium Smelters
Oceania	Australia	Australian Aluminium Council
	Brazil	Brazil Aluminium Association - Statistical Yearbook 2019
		Hydro
	Argentina	Personnel hours Puerto Madryn 2019
South America	Guyana	Rusal Sustainability Report 2019
		European Aluminium Sustainable Development Indicators
West Europe	EU28+EFTA	2015 Full Data Set
		2020 Economic Impact of the Aluminium Industry, John
	USA	Dunham & Associates
		Aluminium Association of Canada Sustainable Development
	Canada	Report 2019
North America	Jamaica	Personnel hours Clarendon refinery 2019
	Bahrain	Alba Smelter
	UAE	EGA Sustainability Report 2019
	Qatar	QATALUM Sustainability Report 2016
	Oman	SOHAR Aluminium Sustainability Report 2019
GULF	Saudi Arabia	Maaden annual report 2019
		Pusal Sustainahilitu Banart 2010
		Rusal Sustainability Report 2019
		Personnel hours: Novokuznetsk, Bratsk, Sayansk, Irkutsk,
		Kandalaksha, Krasnoyarsk, Volgogradsk, Boguchansk
East & Central	Russia	smelters; Achinsk, Bogoslovsk, Bauxitogorsk refineries 2019
Europe	Ukraine	Rusal Sustainability Report 2019

-	Country	Source		
	Mozambique	South32 Sustainability Performance Report 2019		
	Ghana	Personnel hours Tema smelter 2019		
	South Africa	Personnel hours Hillside smelter 2019		
	Nigeria	Rusal Sustainability Report 2019		
		Rusal Sustainability Report 2019		
		Alcoa Guinea		
Africa	Guinea	EGA Sustainability Report 2019		
	Indonesia	PTINALUM annual report 2019		
Malaysia		Press Metal sustainability report 2020		
		Sistem Aluminyum		
Turkey	Turkey	Eti Aluminyum AS		
	'Aluminium Industry contribution to Indian economy' report			
	India	by Hindalco 2020		
		Industrial Statistics 2019, Ministry of Economy Trade &		
	Japan	Industry of Japan; Japan Aluminium Association		
	Kazakhstan	Personnel hours Uralsk 2019		
ASIA EX CHINA	Armenia	Rusal Sustainability Report 2019		
OTHER				
Downstream pro	oduction data	IAI Alucycle		
Bauxite product	ion data	WBMS Yearbook 2020		
Alumina production data		IAI energy data 2019		
Aluminium proc	luction data	IAI energy data 2019		
Rolling and extr	usions (downstream) ratios	Antaike		
-	alumina (upstream) ratios	Antaike		

International Aluminium Institute

2 Duke Street

St James's

London

SW1Y6BN

United Kingdom

+44 (0) 20 7930 0528

international-aluminium.org